SPECIFICATION INDEX # Electrical TABLE OF CONTENT 16000 - 1 ## PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. ## 1.2 SUMMARY A. This Section includes SPDs for low-voltage power, control, and communication equipment. ## 1.3 DEFINITIONS - A. ATS: Acceptance Testing Specifications. - B. SVR: Suppressed voltage rating. - C. SPD: SURGE PROTECTIVE DEVICES ## 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. Include rated capacities, operating weights, operating characteristics, furnished specialties, and accessories. - B. Product Certificates: For transient voltage suppression devices, signed by product manufacturer certifying compliance with the following standards: - 1. UL 1283. - 2. UL 1449 3RD edition. - C. Field quality-control test reports, including the following: - 1. Test procedures used. - 2. Test results that comply with requirements. - 3. Failed test results and corrective action taken to achieve requirements. - D. Operation and Maintenance Data: For transient voltage suppression devices to include in emergency, operation, and maintenance manuals. - E. Warranties: Special warranties specified in this Section. # 1.5 QUALITY ASSURANCE A. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction. - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3. - B. Source Limitations: Obtain suppression devices and accessories through one source from a single manufacturer. - C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - D. Comply with IEEE C62.41, "IEEE Guide for Surge Voltages in Low Voltage AC Power Circuits," and test devices according to IEEE C62.45, "IEEE Guide on Surge Testing for Equipment Connected to Low-Voltage AC Power Circuits." - E. Comply with NEMA LS 1, "Low Voltage Surge Protection Devices." - F. Comply with UL 1283, "Electromagnetic Interference Filters," and UL 1449, "Transient Voltage Surge Suppressors." 3rd edition or current safety standard. #### 1.6 PROJECT CONDITIONS - A. Service Conditions: Rate surge protection devices for continuous operation under the following conditions, unless otherwise indicated: - 1. Maximum Continuous Operating Voltage: Not less than 115 percent of nominal system operating voltage. - 2. Operating Temperature: 30 to 120 deg F (0 to 50 deg C). - 3. Humidity: 0 to 85 percent, noncondensing. - 4. Altitude: Less than 20,000 feet (6090 m) above sea level. ## 1.7 COORDINATION - A. Coordinate location of field-mounted surge suppressors to allow adequate clearances for maintenance. - B. Coordinate surge protection devices with Division 16 Section "Electrical Power Monitoring and Control." ## 1.8 WARRANTY - A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of surge suppressors that fail in materials or workmanship within ten years from date of Substantial Completion. - B. Special Warranty for Cord-Connected, Plug-in Surge Suppressors: Manufacturer's standard form in which manufacturer agrees to repair or replace electronic equipment connected to circuits protected by surge suppressors. ## 1.9 EXTRA MATERIALS - A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. - 1. Replaceable Protection Modules: One of each size and type installed. #### PART 2 - PRODUCTS ## 2.1 MANUFACTURERS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Current Technology, Inc. - 2. LEA International. - 3. Liebert Corporation; a division of Emerson. #### 2.2 SERVICE ENTRANCE SUPPRESSORS - A. Surge Protection Device Description: Modular design with field-replaceable modules, sine-wave-tracking type with the following features and accessories: - 1. SPDs should not use fuses and KAIC rating shall match or exceed that of the connection point. - 2. Fabrication using bolted compression lugs for internal wiring. - 3. Integral disconnect switch. - 4. Redundant suppression circuits. - 5. Redundant replaceable modules. - 6. Arrangement with copper bus bars and for bolted connections to phase buses, neutral bus, and ground bus. - 7. Arrangement with wire connections to phase buses, neutral bus, and ground bus. - 8. LED indicator lights for power and protection status. - 9. Audible alarm, with silencing switch, to indicate when protection has failed. - 10. One set of dry contacts rated at 5 A and 250-V ac, for remote monitoring of protection status. Coordinate with building power monitoring and control system. - 11. Surge-event operations counter. - B. Peak Single-Impulse Surge Current Rating: 100 kA per phase. - C. Connection Means: Permanently wired. - D. Protection modes and UL 1449 SVR for grounded circuits with voltages of 480 volt 3-phase circuits shall be as follows: Line to Line: 800 V for 480 Line to Ground: 800 V for 480 # 2.3 ENCLOSURES A. NEMA 250, with type matching the enclosure of panel or device being protected. ## PART 3 - EXECUTION ## 3.1 INSTALLATION OF SURGE PROTECTION DEVICES - A. Install devices at service entrance on load side, with ground lead bonded to service entrance ground. - B. Install devices for panelboard and auxiliary panels with conductors or buses between suppressor and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground. 1. Provide multipole, 60A circuit breaker as a dedicated disconnect for suppressor, unless otherwise indicated. ## 3.2 PLACING SYSTEM INTO SERVICE A. Do not energize or connect service entrance equipment to their sources until surge protection devices are installed and connected. ## 3.3 FIELD QUALITY CONTROL - A. Testing: Engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports: - B. Testing: Perform the following field tests and inspections and prepare test reports: - 1. After installing surge protection devices, but before electrical circuitry has been energized, test for compliance with requirements. - 2. Complete startup checks according to manufacturer's written instructions. - 3. Perform each visual and mechanical inspection and electrical test stated in NETA ATS, "Surge Arresters, Low-Voltage Surge Protection Devices" Section. Certify compliance with test parameters. - C. Remove and replace malfunctioning units and retest as specified above. ## 3.4 DEMONSTRATION A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transient voltage suppression devices. Refer to Division 1 Section Demonstration and Training END OF SECTION 16289 #### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. Section Includes: - 1. Electrical equipment coordination and installation. - 2. Sleeves for raceways and cables. - 3. Sleeve seals. - 4. Grout. - 5. Common electrical installation requirements. ## 1.3 DEFINITIONS - A. EPDM: Ethylene-propylene-diene terpolymer rubber. - B. NBR: Acrylonitrile-butadiene rubber. ## 1.4 SUBMITTALS A. Product Data: For sleeve seals. ## 1.5 COORDINATION - A. Coordinate arrangement, mounting, and support of electrical equipment: - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated. - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations. - 3. To allow right of way for piping and conduit installed at required slope. - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment. - B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed. - C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 8 Section "Access Doors and Frames." - D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 7 Section "Through-Penetration Firestop Systems." #### PART 2 - PRODUCTS #### 2.1 SLEEVES FOR RACEWAYS AND CABLES - A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends. - B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated. - C. Sleeves for Rectangular Openings: Galvanized sheet steel. - 1. Minimum Metal Thickness: - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm). - b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm). ## 2.2 SLEEVE SEALS - A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable. - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following - a. Advance Products & Systems, Inc. - b. Calpico, Inc. - c. Metraflex Co. - d. Pipeline Seal and Insulator, Inc. - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable. - 3. Pressure Plates: Plastic Include two for each sealing element. - 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element. #### 2.3 GROUT A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time. ## PART 3 - EXECUTION - 3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION - A. Comply with NECA 1. - B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items. - C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements. - D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity. - E. Right of Way: Give to piping systems installed at a required slope. #### 3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS - A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies. - B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls. - C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening. - D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall. - E. Cut sleeves to length for mounting flush with both surfaces of walls. - F. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. - G. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise. - H. Seal space outside of sleeves with grout for penetrations of concrete and masonry - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing. - I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 7 Section "Joint Sealants." - J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 7 Section "Through-Penetration Firestop Systems." - K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work. - L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals. - M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals. ## 3.3 SLEEVE-SEAL INSTALLATION - A. Install to seal exterior wall penetrations. - B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal. ## 3.4 FIRESTOPPING A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 7 Section "Through-Penetration Firestop Systems." END OF SECTION 16051 #### PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Isolation pads. - 2. Spring isolators. - 3. Restrained spring isolators. - 4. Channel support systems. - 5. Restraint cables. - 6. Hanger rod stiffeners. - 7. Anchorage bushings and washers. - B. Related Sections include the following: - 1. Division 16 Section "Hangers and Supports for Electrical Systems" for commonly used electrical supports and installation requirements. ## 1.3 DEFINITIONS - A. The IBC: International Building Code. - B. ICC-ES: ICC-Evaluation Service. - C. OSHPD: Office of Statewide Health Planning and Development for the State of California. ## 1.4 PERFORMANCE REQUIREMENTS - A. Seismic-Restraint Loading: - 1. Site Class as Defined in the IBC: Refer to structural specification - 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: III # 1.5 SUBMITTALS - A. Product Data: For the following: - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device. - 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used. - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES - b. Annotate to indicate application of each product submitted and compliance with requirements. - 3. Restrained-Isolation Devices: Include ratings for horizontal, vertical, and combined loads. - B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation. - 1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators and seismic restraints. - a. Coordinate design calculations with wind-load calculations required for equipment mounted outdoors. Comply with requirements in other Division 16 Sections for equipment mounted outdoors. - Indicate materials and dimensions and identify hardware, including attachment and anchorage devices. - 3. Field-fabricated supports. - 4. Seismic-Restraint Details: - Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads. - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices. - C. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints. - D. Welding certificates. - E. Field quality-control test reports. ## 1.6 QUALITY ASSURANCE - A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent. - B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel." - C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer. - D. Comply with NFPA 70. #### PART 2 - PRODUCTS #### 2.1 VIBRATION ISOLATORS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Ace Mountings Co., Inc. - 2. Amber/Booth Company, Inc. - 3. California Dynamics Corporation. - 4. Isolation Technology, Inc. - 5. Kinetics Noise Control. - 6. Mason Industries. - 7. Vibration Eliminator Co., Inc. - 8. Vibration Isolation. - 9. Vibration Mountings & Controls, Inc. ## 2.2 SEISMIC-RESTRAINT DEVICES - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Amber/Booth Company, Inc. - 2. California Dynamics Corporation. - 3. Cooper B-Line, Inc.; a division of Cooper Industries. - 4. Hilti Inc. - 5. Loos & Co.; Seismic Earthquake Division. - 6. Mason Industries. - 7. TOLCO Incorporated; a brand of NIBCO INC. - 8. Unistrut; Tyco International, Ltd. - B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be as defined in reports by an evaluation service member of ICC-ES - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected. - C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces. - D. Restraint Cables: ASTM A 603 galvanized steel cables with end connections made of steel assemblies with thimbles, brackets, swivels, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement. - E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod. Do not weld stiffeners to rods. - F. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs. - G. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices. - H. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face. - I. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter. - J. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. ## 2.3 FACTORY FINISHES - A. Finish: Manufacturer's standard prime-coat finish ready for field painting. - B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping. - 1. Powder coating on springs and housings. - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use. - 3. Baked enamel or powder coat for metal components on isolators for interior use. - 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range. ## PART 3 - EXECUTION ## 3.1 EXAMINATION - A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance. - B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation. - C. Proceed with installation only after unsatisfactory conditions have been corrected. ## 3.2 APPLICATIONS - A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an evaluation service member of ICC-ES - B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled where required to prevent buckling of hanger rods due to seismic forces. - C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits. ## 3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION - A. Equipment and Hanger Restraints: - 1. Install restrained isolators on electrical equipment. - 2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm). - 3. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES providing required submittals for component. - B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall. - C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members. #### D. Drilled-in Anchors: - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines. - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength. - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened. - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive. - 5. Set anchors to manufacturer's recommended torque, using a torque wrench. - 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications. # 3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where they terminate with connection to equipment that is anchored to a different structural element from the one supporting them as they approach equipment. #### 3.5 FIELD QUALITY CONTROL - A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports. - B. Perform tests and inspections. - C. Tests and Inspections: - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction. - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice. - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members. - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect. - 5. Test to 90 percent of rated proof load of device. - 6. Measure isolator restraint clearance. - 7. Measure isolator deflection. - 8. Verify snubber minimum clearances. - 9. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved. - D. Remove and replace malfunctioning units and retest as specified above. - E. Prepare test and inspection reports. # 3.6 ADJUSTING - A. Adjust isolators after isolated equipment is at operating weight. - B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation. - C. Adjust active height of spring isolators. - D. Adjust restraints to permit free movement of equipment within normal mode of operation. END OF SECTION 16074 ## **GENERAL** #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Identification for raceway and metal-clad cable. - 2. Identification for conductors and communication and control cable. - 3. Underground-line warning tape. - 4. Warning labels and signs. - 5. Instruction signs. - 6. Equipment identification labels. - 7. Miscellaneous identification products. ## 1.3 SUBMITTALS A. Product Data: For each electrical identification product indicated. ## 1.4 QUALITY ASSURANCE - A. Comply with ANSI A13.1 and ANSI C2. - B. Comply with NFPA 70. - C. Comply with 29 CFR 1910.145. ## 1.5 COORDINATION - A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual, and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project. - B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied. - C. Coordinate installation of identifying devices with location of access panels and doors. - D. Install identifying devices before installing acoustical ceilings and similar concealment. #### PART 2 - PRODUCTS ## 2.1 RACEWAY AND METAL-CLAD CABLE IDENTIFICATION MATERIALS - A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size. - B. Color for Printed Legend: - 1. Power Circuits: Black letters on an orange field. - 2. Legend: Indicate system or service and voltage, if applicable. - C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label. - D. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action. - E. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action. - F. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches (50 mm) wide; compounded for outdoor use. # 2.2 CONDUCTOR AND COMMUNICATION- AND CONTROL-CABLE IDENTIFICATION MATERIALS - A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide. - B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process. - C. Aluminum Wraparound Marker Labels: Cut from 0.014-inch- (0.35-mm-) thick aluminum sheet, with stamped, embossed, or scribed legend, and fitted with tabs and matching slots for permanently securing around wire or cable jacket or around groups of conductors. - D. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking nylon tie fastener. - E. Write-On Tags: Polyester tag, 0.010 inch (0.25 mm) thick, with corrosion-resistant grommet and polyester or nylon tie for attachment to conductor or cable. - 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer. #### 2.3 UNDERGROUND-LINE WARNING TAPE - A. Description: Permanent, bright-colored, continuous-printed, polyethylene tape. - 1. Not less than 6 inches (150 mm) wide by 4 mils (0.102 mm) thick. - 2. Compounded for permanent direct-burial service. - 3. Embedded continuous metallic strip or core. - 4. Printed legend shall indicate type of underground line. #### 2.4 WARNING LABELS AND SIGNS - A. Comply with NFPA 70 and 29 CFR 1910.145. - B. Self-Adhesive Warning Labels: Factory printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment, unless otherwise indicated. - C. Baked-Enamel Warning Signs: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 7 by 10 inches (180 by 250 mm). - D. Metal-Backed, Butyrate Warning Signs: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 10 by 14 inches (250 by 360 mm). - E. Warning label and sign shall include, but are not limited to, the following legends: - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES." - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)." ## 2.5 INSTRUCTION SIGNS - A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. in. (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes. - 1. Engraved legend with black letters on white face - 2. Punched or drilled for mechanical fasteners. - 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment. ## 2.6 EQUIPMENT IDENTIFICATION LABELS - A. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). - B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). Overlay shall provide a weatherproof and ultraviolet-resistant seal for label. - C. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm). - D. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm). - E. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch (25 mm) #### 2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties. - 1. Minimum Width: 3/16 inch (5 mm). - 2. Tensile Strength: 50 lb (22.6 kg), minimum. - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C). - 4. Color: Black, except where used for color-coding. - B. Paint: Paint materials and application requirements are specified in Division 9 painting Sections. - 1. Exterior Concrete, Stucco, and Masonry (Other Than Concrete Unit Masonry): - a. Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a primer. - 1) Primer: Exterior concrete and masonry primer. - 2) Finish Coats: Exterior semigloss acrylic enamel. - 2. Exterior Concrete Unit Masonry: - a. Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a block filler. - 1) Block Filler: Concrete unit masonry block filler. - 2) Finish Coats: Exterior semigloss acrylic enamel. - 3. Exterior Ferrous Metal: - a. Semigloss Alkyd-Enamel Finish: Two finish coat(s) over a primer. - 1) Primer: Exterior ferrous-metal primer. - 2) Finish Coats: Exterior semigloss alkyd enamel. - 4. Exterior Zinc-Coated Metal (except Raceways): - a. Semigloss Alkyd-Enamel Finish: Two finish coat(s) over a primer. - 1) Primer: Exterior zinc-coated metal primer. - 2) Finish Coats: Exterior semigloss alkyd enamel. - 5. Interior Concrete and Masonry (Other Than Concrete Unit Masonry): - a. Semigloss Alkyd-Enamel Finish: Two finish coat(s) over a primer. - 1) Primer: Interior concrete and masonry primer. - 2) Finish Coats: Interior semigloss alkyd enamel. - 6. Interior Concrete Unit Masonry: - a. Semigloss Acrylic-Enamel Finish: Two > finish coat(s) over a block filler. - 1) Block Filler: Concrete unit masonry block filler. - 2) Finish Coats: Interior semigloss acrylic enamel. - 7. Interior Gypsum Board: - a. Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a primer. - 1) Primer: Interior gypsum board primer. - 2) Finish Coats: Interior semigloss acrylic enamel. - 8. Interior Ferrous Metal: - a. Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a primer. - 1) Primer: Interior ferrous-metal primer. - 2) Finish Coats: Interior semigloss acrylic enamel. - 9. Interior Zinc-Coated Metal (except Raceways): - a. Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a primer. - 1) Primer: Interior zinc-coated metal primer. - 2) Finish Coats: Interior semigloss acrylic enamel. - C. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers. #### PART 3 - EXECUTION #### 3.1 APPLICATION - A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A Identify with orange self-adhesive vinyl labe - B. Accessible Raceways and Cables of Auxiliary Systems: Identify the following systems with color-coded, self-adhesive vinyl tape applied in bands - 1. Fire Alarm System: Red. - 2. Fire-Suppression Supervisory and Control System: Red and yellow. - 3. Combined Fire Alarm and Security System: Red and blue. - 4. Security System: Blue and yellow. - 5. Mechanical and Electrical Supervisory System: Green and blue. - 6. Telecommunication System: Green and yellow. - 7. Control Wiring: Green and red. - C. Power-Circuit Conductor Identification: For primary and secondary conductors No. 1/0AWG and larger in vaults, pull and junction boxes, manholes, and handholes use color-coding conductor tape Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above. - D. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in same junction or pull box, use color-coding conductor tape. Identify each ungrounded conductor according to source and circuit number. - E. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, signal, sound, intercommunications, voice, and data connections. - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation. - 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections. - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and Operation and Maintenance Manual. - F. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable. Install underground-line warning tape for both direct-buried cables and cables in raceway. - G. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Comply with 29 CFR 1910.145 and apply self-adhesive warning labels. Identify system voltage with black letters on an orange background. Apply to exterior of door, cover, or other access. - 1. Equipment with Multiple Power or Control Sources: Apply to door or cover of equipment including, but not limited to, the following: - a. Power transfer switches. - b. Controls with external control power connections. - 2. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces. - H. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification. - 1. Labeling Instructions: - a. Indoor Equipment: Adhesive film label Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where 2 lines of text are required, use labels 2 inches (50 mm) high. - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label. - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor. - 2. Equipment to Be Labeled: - a. Panelboards, electrical cabinets, and enclosures. - b. Access doors and panels for concealed electrical items. - c. Electrical switchgear and switchboards. - d. Transformers. - e. Electrical substations. - f. Emergency system boxes and enclosures. - g. Motor-control centers. - h. Disconnect switches. - i. Enclosed circuit breakers. - j. Motor starters. - k. Push-button stations. - 1. Power transfer equipment. - m. Contactors. - n. Remote-controlled switches, dimmer modules, and control devices. - o. Battery inverter units. - p. Battery racks. - q. Power-generating units. - r. Voice and data cable terminal equipment. - s. Master clock and program equipment. - t. Intercommunication and call system master and staff stations. - u. Television/audio components, racks, and controls. - v. Fire-alarm control panel and annunciators. - Security and intrusion-detection control stations, control panels, terminal cabinets, and racks. - x. Monitoring and control equipment. - y. Uninterruptible power supply equipment. z. Terminals, racks, and patch panels for voice and data communication and for signal and control functions. #### 3.2 INSTALLATION - A. Verify identity of each item before installing identification products. - B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. - C. Apply identification devices to surfaces that require finish after completing finish work. - D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device. - E. Attach nonadhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate. - F. System Identification Color Banding for Raceways and Cables: Each color band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas. - G. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors. - 1. Color shall be factory applied or, for sizes larger than No. 10 AWG if authorities having jurisdiction permit, field applied - 2. Colors for 208/120-V Circuits: - a. Phase A: Black. - b. Phase B: Red. - c. Phase C: Blue. - 3. Colors for 480/277-V Circuits: - a. Phase A: Brown. - b. Phase B: Orange. - c. Phase C: Yellow. - 4. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings. - H. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility. - I. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench exceeds 16 inches (400 mm) overall. - J. Painted Identification: Prepare surface and apply paint according to Division 9 painting Sections. #### PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Building wires and cables rated 600 V and less. - 2. Connectors, splices, and terminations rated 600 V and less. - 3. Sleeves and sleeve seals for cables. - B. Related Sections include the following: - 1. Division 16 Section "Voice and Data Communication Cabling" for cabling used for voice and data circuits - 2. Division 16 Section "Undercarpet Cables" for flat cables for undercarpet installations. - 3. Division 16 Section "Medium-Voltage Cables" for single-conductor and multiconductor cables, cable splices, and terminations for electrical distribution systems with 2001 to 35,000 V. ## 1.3 DEFINITIONS - A. EPDM: Ethylene-propylene-diene terpolymer rubber. - B. NBR: Acrylonitrile-butadiene rubber. #### 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Qualification Data: For testing agency. - C. Field quality-control test reports. ## 1.5 QUALITY ASSURANCE - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - B. Comply with NFPA 70. ## 1.6 COORDINATION A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed. #### PART 2 - PRODUCTS ## 2.1 CONDUCTORS AND CABLES - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Alcan Products Corporation; Alcan Cable Division. - 2. American Insulated Wire Corp.; a Leviton Company. - 3. General Cable Corporation. - 4. Senator Wire & Cable Company. - 5. Southwire Company. 6. - B. Copper Conductors: Comply with NEMA WC 70. - C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN ## 2.2 CONNECTORS AND SPLICES - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. AFC Cable Systems, Inc. - 2. Hubbell Power Systems, Inc. - 3. O-Z/Gedney; EGS Electrical Group LLC. - 4. 3M; Electrical Products Division. - 5. Tyco Electronics Corp. - B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated. # 2.3 SLEEVES FOR CABLES - A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends. - B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated. - C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application. - D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 7 Section "Through-Penetration Firestop Systems." ## 2.4 SLEEVE SEALS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Advance Products & Systems, Inc. - 2. Calpico, Inc. - 3. Metraflex Co. - 4. Pipeline Seal and Insulator, Inc. - 5. <Insert manufacturer's name.> #### PART 3 - EXECUTION #### 3.1 CONDUCTOR MATERIAL APPLICATIONS - A. Feeders: Copper for feeders smaller than No. 4 AWG; copper or aluminum for panel feeders No. 4 AWG and larger]. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger. - B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger. # 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS - A. Service Entrance: Type THHN-THWN, single conductors in raceway - B. Exposed Feeders: Type THHN-THWN, single conductors in raceway - C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN-THWN, single conductors in raceway - D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway - E. Feeders Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway - F. Exposed Branch Circuits, Including in Crawlspaces: Type THHN-THWN, single conductors in raceway - G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway or Metal-clad cable-Type MC as indicated on the drawings - H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway - I. Branch Circuits Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway - J. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application. - K. Class 1 Control Circuits: Type THHN-THWN, in raceway. #### 3.3 INSTALLATION OF CONDUCTORS AND CABLES - A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated. - B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values. - C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway. - D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible. - E. Support cables according to Division 16 Section "Electrical Supports and Seismic Restraints." F. Identify and color-code conductors and cables according to Division 16 Section "Electrical Identification." #### 3.4 CONNECTIONS - A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B. - B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors. - C. Wiring at Outlets: Install conductor at each outlet, with at least [6 inches (150 mm)] [12 inches (300 mm)] of slack. #### 3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS - A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 7 Section "Through-Penetration Firestop Systems." - B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls. - C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening. - D. Rectangular Sleeve Minimum Metal Thickness: - 1. For sleeve rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm). - 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm). - E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall. - F. Cut sleeves to length for mounting flush with both wall surfaces. - G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. - H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and cable unless sleeve seal is to be installed - I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies - J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 7 Section "Joint Sealants." - K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 7 Section "Through-Penetration Firestop Systems." - L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work. - M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals. - N. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between cable and sleeve for installing mechanical sleeve seals. ## 3.6 SLEEVE-SEAL INSTALLATION - A. Install to seal underground exterior-wall penetrations. - B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal. ## 3.7 FIRESTOPPING A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 7 Section "Through-Penetration Firestop Systems." ## 3.8 FIELD QUALITY CONTROL - A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports. - B. Perform tests and inspections and prepare test reports. - C. Tests and Inspections: - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors, and conductors feeding the following critical equipment and services for compliance with requirements. - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters. - D. Test Reports: Prepare a written report to record the following: - 1. Test procedures used. - 2. Test results that comply with requirements. - 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements. - E. Remove and replace malfunctioning units and retest as specified above. END OF SECTION 16120 #### PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring. - B. Related Sections include the following: - 1. Division 2 Section "Underground Ducts and Utility Structures" for exterior ductbanks, manholes, and underground utility construction. ## 1.3 DEFINITIONS - A. EMT: Electrical metallic tubing. - B. ENT: Electrical nonmetallic tubing. - C. EPDM: Ethylene-propylene-diene terpolymer rubber. - D. FMC: Flexible metal conduit. - E. IMC: Intermediate metal conduit. - F. LFMC: Liquidtight flexible metal conduit. - G. LFNC: Liquidtight flexible nonmetallic conduit. - H. NBR: Acrylonitrile-butadiene rubber. - I. RNC: Rigid nonmetallic conduit. ## 1.4 SUBMITTALS - A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets. - B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work. - 1. Custom enclosures and cabinets. - 2. For handholes and boxes for underground wiring, including the following: - a. Duct entry provisions, including locations and duct sizes. - b. Frame and cover design. - c. Grounding details. - d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons. - e. Joint details. - C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved: - 1. Structural members in the paths of conduit groups with common supports. - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports. - D. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, will withstand seismic forces defined in Division 16 Section "Electrical Supports and Seismic Restraints." Include the following: - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. - a. The term "withstand" means "the cabinet or enclosure will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will retain its enclosure characteristics, including its interior accessibility, after the seismic event - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements. - E. Qualification Data: For professional engineer and testing agency. - F. Source quality-control test reports. #### 1.5 QUALITY ASSURANCE - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - B. Comply with NFPA 70. #### PART 2 - PRODUCTS ## 2.1 METAL CONDUIT AND TUBING - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. AFC Cable Systems, Inc. - 2. Alflex Inc. - 3. Allied Tube & Conduit; a Tyco International Ltd. Co. - 4. Anamet Electrical, Inc.; Anaconda Metal Hose. - 5. Electri-Flex Co. - 6. Manhattan/CDT/Cole-Flex. - 7. Maverick Tube Corporation. - 8. O-Z Gedney; a unit of General Signal. - 9. Wheatland Tube Company. - Rigid Steel Conduit: ANSI C80.1. - C. Aluminum Rigid Conduit: ANSI C80.5. - D. IMC: ANSI C80.6. - E. PVC-Coated Steel Conduit: PVC-coated - 1. Comply with NEMA RN 1. - 2. Coating Thickness: 0.040 inch (1 mm), minimum. - F. EMT: ANSI C80.3. - G. FMC: - H. LFMC: Flexible steel conduit with PVC jacket. - I. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed. - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886. - 2. Fittings for EMT: set-screw type. - 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints. - J. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity. ## 2.2 NONMETALLIC CONDUIT AND TUBING - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. AFC Cable Systems, Inc. - 2. Anamet Electrical, Inc.; Anaconda Metal Hose. - 3. Arnco Corporation. - 4. CANTEX Inc. - 5. CertainTeed Corp.; Pipe & Plastics Group. - 6. Condux International, Inc. - 7. ElecSYS, Inc. - 8. Electri-Flex Co. - 9. Lamson & Sessions; Carlon Electrical Products. - 10. Manhattan/CDT/Cole-Flex. - 11. RACO; a Hubbell Company. - 12. Thomas & Betts Corporation. - B. ENT: NEMA TC 13. - C. RNC: NEMA TC 2, Type EPC-40-PVC, unless otherwise indicated. - D. LFNC: UL 1660. - E. Fittings for ENT and RNC: NEMA TC 3; match to conduit or tubing type and material. - F. Fittings for LFNC: UL 514B. #### 2.3 METAL WIREWAYS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Cooper B-Line, Inc. - 2. Hoffman. - 3. Square D; Schneider Electric. - B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type [1] [12] [3R], unless otherwise indicated. - C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system. - D. Wireway Covers: Hinged type - E. Finish: Manufacturer's standard enamel finish. ## 2.4 NONMETALLIC WIREWAYS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Hoffman. - 2. Lamson & Sessions; Carlon Electrical Products. - B. Description: Fiberglass polyester, extruded and fabricated to size and shape indicated, with no holes or knockouts. Cover is gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections are flanged, with stainless-steel screws and oil-resistant gaskets. - C. Description: PVC plastic, extruded and fabricated to size and shape indicated, with snap-on cover and mechanically coupled connections with plastic fasteners. - D. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system. #### 2.5 SURFACE RACEWAYS - A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected by Architect - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Thomas & Betts Corporation. - b. Walker Systems, Inc.; Wiremold Company (The). - c. Wiremold Company (The); Electrical Sales Division. - B. Surface Nonmetallic Raceways: Two-piece construction, manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Butler Manufacturing Company; Walker Division. - b. Enduro Systems, Inc.; Composite Products Division. - c. Hubbell Incorporated; Wiring Device-Kellems Division. - d. Lamson & Sessions; Carlon Electrical Products. - e. Panduit Corp. - f. Walker Systems, Inc.; Wiremold Company (The). - g. Wiremold Company (The); Electrical Sales Division. ## 2.6 BOXES, ENCLOSURES, AND CABINETS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc. - 2. EGS/Appleton Electric. - 3. Erickson Electrical Equipment Company. - 4. Hoffman. - 5. Hubbell Incorporated; Killark Electric Manufacturing Co. Division. - 6. O-Z/Gedney; a unit of General Signal. - 7. RACO; a Hubbell Company. - 8. Robroy Industries, Inc.; Enclosure Division. - 9. Scott Fetzer Co.; Adalet Division. - 10. Spring City Electrical Manufacturing Company. - 11. Thomas & Betts Corporation. - 12. Walker Systems, Inc.; Wiremold Company (The). - 13. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary. - B. Sheet Metal Outlet and Device Boxes: NEMA OS 1. - C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, aluminum, Type FD, with gasketed cover. - D. Nonmetallic Outlet and Device Boxes: NEMA OS 2. - E. Metal Floor Boxes: semi-adjustable, rectangular. - F. Nonmetallic Floor Boxes: Nonadjustable, round. - G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1. - H. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover. # 2.7 SLEEVES FOR RACEWAYS - A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends. - B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated. - C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application. - D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 7 Section "Through-Penetration Firestop Systems." ## 2.8 SLEEVE SEALS A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: RACEWAYS AND BOXES 16130 - 5 - 1. Advance Products & Systems, Inc. - 2. Calpico, Inc. - 3. Metraflex Co. - 4. Pipeline Seal and Insulator, Inc. ## 2.9 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES - A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied. - 1. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards. #### PART 3 - EXECUTION ## 3.1 RACEWAY APPLICATION - A. Outdoors: Apply raceway products as specified below, unless otherwise indicated: - 1. Exposed Conduit: Rigid steel conduit. - 2. Concealed Conduit, Aboveground: Rigid steel conduit - 3. Underground Conduit: RNC, Type EPC-40PVC, direct buried. - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R - 6. Application of Handholes and Boxes for Underground Wiring: - a. Handholes and Pull Boxes in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Fiberglass enclosures with polymer-concrete frame and cover, SCTE 77, Tier 15 structural load rating. - b. Handholes and Pull Boxes in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Heavy-duty fiberglass units with polymer-concrete frame and cover, SCTE 77, Tier 8 structural load rating. - Handholes and Pull Boxes Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf (13 345-N) vertical loading. - B. Comply with the following indoor applications, unless otherwise indicated: - 1. Exposed, Not Subject to Physical Damage: EMT - 2. Exposed, Not Subject to Severe Physical Damage: EMT - 3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit Includes raceways in the following locations: - a. Loading dock. - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units. - c. Mechanical rooms. - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations. - 6. Damp or Wet Locations: Rigid steel conduit - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel in damp or wet locations. - C. Minimum Raceway Size: [1/2-inch (16-mm)] [3/4-inch (21-mm)] trade size. - D. Raceway Fittings: Compatible with raceways and suitable for use and location. - Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated. - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer. ## 3.2 INSTALLATION - A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter. - B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping. - C. Complete raceway installation before starting conductor installation. - D. Support raceways as specified in Division 16 Section "Electrical Supports and Seismic Restraints." - E. Arrange stub-ups so curved portions of bends are not visible above the finished slab. - F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed. - G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated. - H. Raceways Embedded in Slabs: - 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings. - 3. Change from ENT to RNC, Type EPC-40-PVC, rigid steel conduit, or IMC before rising above the floor. - I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions. - J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG. - K. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. - L. Raceways for Optical Fiber and Communications Cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows: - 1. 3/4-Inch (19-mm) Trade Size and Smaller: Install raceways in maximum lengths of 50 feet (15 m). - 2. 1-Inch (25-mm) Trade Size and Larger: Install raceways in maximum lengths of 75 feet (23 m). - 3. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements. - M. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points: - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces. - 2. Where otherwise required by NFPA 70. - N. Expansion-Joint Fittings for RNC: Install in each run of aboveground conduit that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet (7.6 m). - 1. Install expansion-joint fittings for each of the following locations, and provide type and quantity of fittings that accommodate temperature change listed for location: - O. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors. - 1. Use LFMC in damp or wet locations subject to severe physical damage. - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage. - P. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. - Q. Set metal floor boxes level and flush with finished floor surface. - R. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface. ## 3.3 INSTALLATION OF UNDERGROUND CONDUIT ## A. Direct-Buried Conduit: - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 2 Section "Earthwork" for pipe less than 6 inches (150 mm) in nominal diameter. - 2. Install backfill as specified in Division 2 Section "Earthwork." - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 2 Section "Earthwork." - 4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout the length of the elbow. - 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor. - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete. - b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment. - 6. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried conduits, placing them 24 inches (600 mm) o.c. Align planks along the width and along the centerline of conduit. #### 3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES - A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances. - B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth. - C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade. # 3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS - A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 7 Section "Through-Penetration Firestop Systems." - B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls. - C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening. - D. Rectangular Sleeve Minimum Metal Thickness: - 1. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm). - 2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm). - E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall. - F. Cut sleeves to length for mounting flush with both surfaces of walls. - G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. - H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway unless sleeve seal is to be installed[or unless seismic criteria require different clearance]. - I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies - J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 7 Section "Joint Sealants" for materials and installation. - K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 7 Section "Through-Penetration Firestop Systems." - L. Roof-Penetration Sleeves: Seal penetration of individual raceways with flexible, boot-type flashing units applied in coordination with roofing work. - M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals. N. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway and sleeve for installing mechanical sleeve seals. #### 3.6 SLEEVE-SEAL INSTALLATION - A. Install to seal underground, exterior wall penetrations. - B. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal. ## 3.7 FIRESTOPPING A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 7 Section "Through-Penetration Firestop Systems." ## 3.8 PROTECTION - A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion. - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer. - Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer. **END OF SECTION 16130** ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY ## A. Section Includes: - 1. Service and distribution switchboards rated 600 V and less. - 2. Disconnecting and overcurrent protective devices. - 3. Accessory components and features. - 4. Identification. ## 1.3 PERFORMANCE REQUIREMENTS - A. Seismic Performance: Switchboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event ## 1.4 SUBMITTALS - A. Product Data: For each type of switchboard, overcurrent protective device, ground-fault protector, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes. - B. Shop Drawings: For each switchboard and related equipment. - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. - 2. Detail enclosure types for types other than NEMA 250, Type 1. - 3. Detail bus configuration, current, and voltage ratings. - 4. Detail short-circuit current rating of switchboards and overcurrent protective devices. - Include descriptive documentation of optional barriers specified for electrical insulation and isolation. - 6. Detail utility company's metering provisions with indication of approval by utility company. - 7. Include evidence of NRTL listing for series rating of installed devices. - 8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components. - 9. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. - 10. Include schematic and wiring diagrams for power, signal, and control wiring. - C. Qualification Data: For qualified Installer and testing agency - D. Seismic Qualification Certificates: Submit certification that switchboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 16 Section "Vibration and Seismic Controls for Electrical Systems." Include the following: - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements. ## E. Field Quality-Control Reports: - 1. Test procedures used. - 2. Test results that comply with requirements. - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements. - F. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1 Section "Operation and Maintenance Data," include the following: - 1. Routine maintenance requirements for switchboards and all installed components. - 2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices. - 3. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. # 1.5 QUALITY ASSURANCE - A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E. - B. Testing Agency Qualifications: Member company of NETA or an NRTL. - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing. - C. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer. - D. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions. - E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application. - F. Comply with NEMA PB 2. - G. Comply with NFPA 70. - H. Comply with UL 891. ### 1.6 DELIVERY, STORAGE, AND HANDLING - A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path. - B. Handle and prepare switchboards for installation according to NECA 400 ## 1.7 PROJECT CONDITIONS - A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place. - B. Environmental Limitations: - 1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period. - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated: - a. Ambient Temperature: Not exceeding 120 deg F - b. Altitude: Not exceeding 9100 feet. - C. Service Conditions: NEMA PB 2, usual service conditions, as follows: - 1. Ambient temperatures within limits specified. - 2. Altitude not exceeding 9100 feet. ## 1.8 COORDINATION - A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels. - B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3. ## 1.9 WARRANTY - A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period. - 1. Warranty Period: Five years from date of Substantial Completion. #### PART 2 - PRODUCTS # 2.1 MANUFACTURED UNITS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following - 1. Siemens Energy & Automation, Inc. (BASE BID) - 2. Eaton Electrical Inc.; Cutler-Hammer Business Unit. (ALTERNATE BID) - 3. General Electric Company; GE Consumer & Industrial Electrical Distribution. (ALTERNATE BID) - 4. Square D; a brand of Schneider Electric. (ALTERNATE BID) - B. Front-Connected, Front-Accessible Switchboards: - 1. Main Devices: Panel mounted. - 2. Branch Devices: Panel mounted. - 3. Sections front and rear aligned. - C. Nominal System Voltage: 480V - D. Main-Bus Continuous: as indicated on the drawing - E. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Division 16 Section "Vibration and Seismic Controls for Electrical Systems." - F. Indoor Enclosures: Steel, NEMA 250, Type 1 - G. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface. - H. Barriers: Between adjacent switchboard sections. - I. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard. - J. Removable, Hinged Rear Doors and Compartment Covers: Secured by standard bolts, for access to rear interior of switchboard. - K. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments. - 1. Removable covers shall form top, front, and sides. Top covers at rear shall be easily removable for drilling and cutting. - 2. Bottom shall be insulating, fire-resistive material with separate holes for cable drops into switchboard. - 3. Cable supports shall be arranged to facilitate cabling and adequate to support cables indicated, including those for future installation. - L. Buses and Connections: Three phase, four wire unless otherwise indicated. - 1. Bus Material: Tin-plated, high-strength, electrical-grade aluminum alloy with tin-plated aluminum circuit-breaker line connections. - 2. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position. - 3. Ground Bus: Minimum-size required by UL 891, hard-drawn copper of 98 percent conductivity, equipped with mechanical connectors for feeder and branch-circuit ground conductors. For busway feeders, extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run. - 4. Main Phase Buses and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends. - 5. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus. ### 2.2 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES - A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with series-connected rating to meet available fault currents. - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger. - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting. - 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings: - a. Instantaneous trip. - b. Long- and short-time time adjustments. - c. Ground-fault pickup level, time delay, and I²t response. - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5. - 5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door. - 6. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip). - 7. Molded-Case Circuit-Breaker (MCCB) Features and Accessories: - a. Standard frame sizes, trip ratings, and number of poles. - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material. - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits. - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator. - e. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function. - f. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system specified in Division 16 Section "Electrical Power Monitoring and Control." - g. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage. - h. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay. - i. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts. - j. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position. - B. Insulated-Case Circuit Breaker (ICCB): 100 percent rated, sealed, insulated-case power circuit breaker with interrupting capacity rating to meet available fault current. - 1. - a. Instantaneous trip. - b. Long- and short-time time adjustments. - c. Ground-fault pickup level, time delay, and I²t response. 2. 3. Manufacturers: Subject to compliance with requirements, provide products by one of the following - a. Boltswitch, Inc. - b. Eaton Electrical Inc.; Cutler-Hammer Business Unit. - c. Pringle Electrical Manufacturing Company, Inc. - d. Siemens Energy & Automation, Inc. - e. Square D; a brand of Schneider Electric. - 4. Main-Contact Interrupting Capability: Minimum of 12 times the switch current rating. - 5. Operating Mechanism: Manual handle operation to close switch; stores energy in mechanism for opening and closing. - a. Electrical Trip: Operation of lever or push-button trip switch, or trip signal from ground-fault relay or remote-control device, causes switch to open. - b. Mechanical Trip: Operation of mechanical lever, push button, or other device causes switch to open. - 6. Auxiliary Switches: Factory installed, single pole, double throw, with leads connected to terminal block, and including one set more than quantity required for functional performance indicated. - 7. Service-Rated Switches: Labeled for use as service equipment. - 8. Ground-Fault Relay: Comply with UL 1053; self-powered type with mechanical ground-fault indicator, test function, tripping relay with internal memory, and three-phase current transformer/sensor. - a. Configuration: Integrally mounted relay and trip unit with adjustable pickup and timedelay settings, push-to-test feature, and ground-fault indicator. - b. Internal Memory: Integrates the cumulative value of intermittent arcing ground-fault currents and uses the effect to initiate tripping. - c. No-Trip Relay Test: Permits ground-fault simulation test without tripping switch. - d. Test Control: Simulates ground fault to test relay and switch (or relay only if "no-trip" mode is selected). - 9. Open-Fuse Trip Device: Arranged to trip switch open if a phase fuse opens. - C. High-Pressure, Butt-Type Contact Switch: Operating mechanism uses butt-type contacts and a spring-charged mechanism to produce and maintain high-pressure contact when switch is closed. - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following - a. General Electric Company; GE Consumer & Industrial Electrical Distribution. - 2. Main-Contact Interrupting Capability: Minimum of 12 times the switch current rating. - 3. Operating Mechanism: Manual handle operation to close switch; stores energy in mechanism for opening and closing. - a. Electrical Trip: Operation of lever or push-button trip switch, or trip signal from ground-fault relay or remote-control device, causes switch to open. - b. Mechanical Trip: Operation of mechanical lever, push button, or other device causes switch to open. - 4. Auxiliary Switches: Factory installed, single pole, double throw, with leads connected to terminal block, and including one set more than quantity required for functional performance indicated. - 5. Service-Rated Switches: Labeled for use as service equipment. - 6. Ground-Fault Relay: Comply with UL 1053; self-powered type with mechanical ground-fault indicator, test function, tripping relay with internal memory, and three-phase current transformer/sensor. - a. Configuration: Integrally mounted relay and trip unit with adjustable pickup and timedelay settings, push-to-test feature, and ground-fault indicator. - b. Internal Memory: Integrates the cumulative value of intermittent arcing ground-fault currents and uses the effect to initiate tripping. - c. No-Trip Relay Test: Permits ground-fault simulation test without tripping switch. - Test Control: Simulates ground fault to test relay and switch (or relay only if "no-trip" mode is selected). - 7. Open-Fuse Trip Device: Arranged to trip switch open if a phase fuse opens. - D. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle. - E. Fuses are specified in Division 16 Section "Fuses." ## 2.3 CONTROL POWER - A. Control Circuits: 120-V ac, supplied through secondary disconnecting devices from control-power transformer. - B. Control Circuits: 120-V ac, supplied from remote branch circuit. ## 2.4 IDENTIFICATION - A. Mimic Bus: Entire single-line switchboard bus work, as depicted on factory record drawing, on a photoengraved nameplate. - 1. Nameplate: At least 0.032-inch- (0.813-mm-) thick anodized aluminum, located at eye level on front cover of the switchboard incoming service section. - B. Mimic Bus: Entire single-line switchboard bus work, as depicted on factory record drawing, on an engraved laminated-plastic (Gravoply) nameplate. - 1. Nameplate: At least 0.0625-inch- (1.588 mm-) thick laminated plastic (Gravoply), located at eye level on front cover of the switchboard incoming service section. - C. Mimic Bus: Continuously integrated mimic bus factory applied to front of switchboard. Arrange in single-line diagram format, using symbols and letter designations consistent with final mimic-bus diagram. - D. Coordinate mimic-bus segments with devices in switchboard sections to which they are applied. Produce a concise visual presentation of principal switchboard components and connections. - E. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices. ## PART 3 - EXECUTION ## 3.1 EXAMINATION A. Receive, inspect, handle, and store switchboards according to NECA 400 - B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged. - C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work. - D. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.2 INSTALLATION - A. Install switchboards and accessories according to NECA 400 - B. Equipment Mounting: Install switchboards on concrete base, 4-inch (100-mm) nominal thickness. Comply with requirements for concrete base specified in Division 3 Section Cast-in-Place Concrete - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base. - 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor. - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded. - 4. Install anchor bolts to elevations required for proper attachment to switchboards. - C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components. - D. Comply with mounting and anchoring requirements specified in Division 16 Section "Vibration and Seismic Controls for Electrical Systems." - E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards. - F. Install filler plates in unused spaces of panel-mounted sections. - G. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation. - 1. Set field-adjustable switches and circuit-breaker trip ranges. - H. Install spare-fuse cabinet. - I. Comply with NECA 1. #### 3.3 CONNECTIONS - A. Comply with requirements for terminating feeder bus specified in Division 16 Section "Enclosed Bus Assemblies." Drawings indicate general arrangement of bus, fittings, and specialties. - B. Comply with requirements for terminating cable trays specified in Division 16 Section "Cable Trays." Drawings indicate general arrangement of cable trays, fittings, and specialties. #### 3.4 IDENTIFICATION - A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Division 16 Section "Electrical Identification." - B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Division 16 Section "Electrical Identification." - C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Division 16 Section "Electrical Identification." #### 3.5 FIELD QUALITY CONTROL - A. Perform tests and inspections. - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. - B. Acceptance Testing Preparation: - 1. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit. - 2. Test continuity of each circuit. ## C. Tests and Inspections: - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters. - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest. - 3. Perform the following infrared scan tests and inspections and prepare reports: - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front panels so joints and connections are accessible to portable scanner. - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchboard 11 months after date of Substantial Completion. - c. Instruments and Equipment: - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device. - 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment. - D. Switchboard will be considered defective if it does not pass tests and inspections. - E. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action. ## 3.6 ADJUSTING - A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer. - B. Set field-adjustable circuit-breaker trip ranges as indicated. # 3.7 PROTECTION A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service. # 3.8 DEMONSTRATION A. Train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories END OF SECTION 16441 #### PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. This Section includes methods and materials for grounding systems and equipment[.][, plus the following special applications:] - 1. Overhead-lines grounding. - 2. Underground distribution grounding. - 3. Common ground bonding with lightning protection system. ## 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Other Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in Part 3 "Field Quality Control" Article, including the following: - 1. Test wells. - 2. Ground rods. - 3. Ground rings. - 4. Grounding arrangements and connections for separately derived systems. - 5. Grounding for sensitive electronic equipment. - C. Field quality-control test reports. - D. Operation and Maintenance Data: For grounding to include the following in emergency, operation, and maintenance manuals: # 1.4 QUALITY ASSURANCE - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - B. Comply with UL 467 for grounding and bonding materials and equipment. ### PART 2 - PRODUCTS ## 2.1 CONDUCTORS - A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction. - B. Bare Copper Conductors: - 1. Solid Conductors: ASTM B 3. - Stranded Conductors: ASTM B 8. - 3. Tinned Conductors: ASTM B 33. - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter. - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor. - 6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick. - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick. - C. Grounding Bus: Rectangular bars of annealed copper, 1/4 by 2 inches (6 by 50 mm) in cross section, unless otherwise indicated: with insulators. #### 2.2 CONNECTORS - A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected. - B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts. - 1. Pipe Connectors: Clamp type, sized for pipe. - C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions. ## 2.3 GROUNDING ELECTRODES A. Ground Rods: Copper-clad 3/4 inch by 10 feet (19 mm by 3 m) ## PART 3 - EXECUTION #### 3.1 APPLICATIONS - A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated. - B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum. - 1. Bury at least 24 inches (600 mm) below grade. - 2. Duct-Bank Grounding Conductor: Bury 12 inches (300 mm) above duct bank when indicated as part of duct-bank installation. - C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow. - D. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated. - 1. Install bus on insulated spacers 1 inch (25 mm), minimum, from wall 6 inches (150 mm) above finished floor, unless otherwise indicated. - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, down to specified height above floor, and connect to horizontal bus. - E. Install insulated equipment grounding conductors with all feeders and branch circuits. - F. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70: - 1. Feeders and branch circuits. - 2. Lighting circuits. - 3. Receptacle circuits. - 4. Single-phase motor and appliance branch circuits. - 5. Three-phase motor and appliance branch circuits. - 6. Flexible raceway runs. - 7. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway. - 8. Computer and Rack-Mounted Electronic Equipment Circuits: Install insulated equipment grounding conductor in branch-circuit runs from equipment-area power panels and power-distribution units. - 9. X-Ray Equipment Circuits: Install insulated equipment grounding conductor in circuits supplying x-ray equipment. - G. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping. - H. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components. - I. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated. - J. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated. - K. Metal Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors. #### 3.2 INSTALLATION - A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage. - B. Common Ground Bonding with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit. - C. Ground Rods: Drive rods until tops are 2 inches (50 mm) below finished floor or final grade, unless otherwise indicated. - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating, if any. - 2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor. - D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Division 2 Section "Underground Ducts and Utility Structures," and shall be at least 12 inches (300 mm) deep, with cover. - 1. Test Wells: Install at least one test well for each service, unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor. - E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit. - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts. - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment. - 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp. ## F. Grounding and Bonding for Piping: - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end. - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector. - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve. - G. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity. - H. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet (18 m) apart. - I. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each steel column extending around the perimeter of building - 1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel. - 2. Bury ground ring not less than 24 inches (600 mm) from building foundation. - J. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70, using a minimum of 20 feet (6 m) of bare copper conductor not smaller than No. 4 AWG. - 1. If concrete foundation is less than 20 feet (6 m) long, coil excess conductor within base of foundation. - 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building grounding grid or to grounding electrode external to concrete. ## 3.3 FIELD QUALITY CONTROL - A. Perform the following tests and inspections and prepare test reports: - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements. - 2. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected. - a. Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance. - b. Perform tests by fall-of-potential method according to IEEE 81. - B. Report measured ground resistances that exceed the following values: - 1. Power and Lighting Equipment or System with Capacity 500 kVA and Less: 10 ohms. - 2. Power and Lighting Equipment or System with Capacity 500 to 1000 kVA: 5 ohms. - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms. - 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 1 ohm(s). - 5. Substations and Pad-Mounted Equipment: 5 ohms.. - C. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance. END OF SECTION 16060